Computational Modeling of Concrete Flow: State of the Art
نویسندگان
چکیده
1. INTRODUCTION To benefit from the full potential of fluid concretes such as Self-Compacting Concrete (SCC) tools for prediction of the form filling of SCC are needed. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. The present lack of such tools may lead to selection of highly flowable mixes with tendency to segregate or mixes without high static and dynamic stability, increasing the risk of improper form filling. Although substantial progress has been made in the field of fluid concretes, we must not forget that the most suitable concrete to cast a given element is a concrete which is just sufficiently fluid to fill the formwork. Additional and thus unnecessary fluidity will always have a cost, e.g. in terms of increased super-plasticizer amount, increased porosity causing loss of mechanical resistance and durability and increased risk of segregation. Important requirements to the hardened concrete are total form filling and bond to reinforcement, homogeneity with regard to paste composition, aggregate distribution and air void content, and high quality surfaces without surface air voids (" blowholes "). All these aspects condition the future hardened properties of the material. Segregation could increase the local porosity and thus the permeability of the concrete to aggressive substances. Varying content of cement paste causes heterogeneous shrinkage and creep in a given concrete element. Moreover, high heterogeneity will increase the probability that these time-dependent phenomenon yield high internal stress gradients and thus cracking. Computational modeling of flow could be used for simulation of e.g. total form filling and detailed flow behavior as particle migration and formation of granular arches between reinforcement (" blocking "). But computational modeling of flow could also be a potential tool for understanding the rheological behaviour of concrete and a tool for mix proportioning. Progresses in the correlation between mix proportioning and rheological parameters would of course result but, moreover, the entire approach to mix proportioning could be improved. Indeed, just as numerical simulations of the loading of concrete structures allow a civil engineer to identify a minimum needed mechanical strength, numerical simulation of the casting process could allow the same engineer to specify a minimum workability of the fresh concrete that could ensure the proper filling of a given formwork. This paper describes the present status regarding computational modeling of the flow of fresh …
منابع مشابه
Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture
3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...
متن کاملModeling of Self-Healing Concrete: A Review
Self-healing concrete (SHC) has received a tremendous attention due to its advanced ability of automatic crack detection and crack repairing compared to the standard concrete. Two main approaches which considered as to-date self-healing mechanisms are autogenous and autonomous healing. In the past several years, the effort of the research has been focused on experimental works instead of numeri...
متن کاملEFFICIENCY FACTOR OF SUPPLEMENTARY CEMENTITIOUS MATERIALS: A STATE OF ART
The use of supplementary cementing materials is gradually increasing due to technical, economical, and environmental benefits. Supplementary cementitious materials (SCM) are most commonly used in producing ready mixed concrete (RMC). A quantitative understanding of the efficiency of SCMs as a mineral admixture in concrete is essential for its effective utilisation. The performance and effective...
متن کاملInvestigation of Swirling and Tumbling Flow Pattern of Spark Ignition Engine
Gas motion within the cylinder is one of the major factors that control the combustion process in spark ignition engine. It also has significant impact on heat transfer. Both the bulk gas motion and the turbulence characteristics of the flow are important and governing the overall behavior of the flow. An arrangement for obtaining a stratified charge, using port injection, is proposed for a ...
متن کاملAn Iterated Greedy Algorithm for Solving the Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria
In this paper, we propose an iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time minimization objective. The steps of this algorithm are designed very efficient. For generating an initial solution, we develop an efficient constructive heuristic by modifying the best known NEH algorithm. Effectiveness of the proposed iterated greedy algorithm is t...
متن کاملCyclic and Monotonic Behavior of Strengthened and Unstrengthened Square Reinforced Concrete Columns
The use of composite materials is an effective technique to enhance the capacity of reinforced concrete columns subjected to the seismic loading due to their high tensile strength. In this paper, numerical models are developed in order to predict the experimental behavior of square reinforced concrete columns strengthened by glass fiber reinforced polymer and steel bars and unstrengthened colum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008